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Abstract
We derive together the exact local, covariant, continuous and off-shell
nilpotent Becchi–Rouet–Stora–Tyutin (BRST) and anti-BRST symmetry
transformations for the U(1) gauge field (Aµ), the (anti-)ghost fields ((C̄)C)

and the Dirac fields (ψ, ψ̄) of the Lagrangian density of a four (3 + 1)-
dimensional QED by exploiting a single restriction on the six (4, 2)-
dimensional supermanifold. A set of four even spacetime coordinates xµ

(µ = 0, 1, 2, 3) and two odd Grassmannian variables θ and θ̄ parametrize
this six-dimensional supermanifold. The new gauge invariant restriction on
the above supermanifold owes its origin to the (super) covariant derivatives
and their intimate relations with the (super) 2-form curvatures (F̃ (2))F (2)

constructed with the help of 1-form (super)gauge connections (Ã(1))A(1) and
(super) exterior derivatives (d̃)d. The results obtained by exploiting (i) the
horizontality condition, and (ii) one of its consistent extensions, are shown to be
a simple consequence of this new single restriction on the above supermanifold.
Thus, our present endeavour provides an alternative to (and, in some sense,
generalization of) the horizontality condition of the usual superfield formalism
applied to the derivation of BRST symmetries.

PACS numbers: 11.15.−q, 12.20.−m, 03.70.+k

1. Introduction

The usual superfield approach [1–6] to Becchi–Rouet–Stora–Tyutin (BRST) formalism
provides the geometrical origin and interpretations for the nilpotent (anti-)BRST symmetry
transformations (and their corresponding generators) for the p-form (p = 1, 2, . . .) gauge
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fields and corresponding (anti-)ghost fields of the p-form interacting gauge theories3 which
include matter fields as well. This approach, however, does not shed any light on the nilpotent
symmetry transformations associated with the matter fields, present in the above interacting
gauge theories. It has been a challenging problem to derive them cogently within the framework
of the superfield approach to BRST formalism.

The above usual superfield formalism has been exploited extensively for the derivation of
the nilpotent (anti-)BRST symmetries in the context of four (3 + 1)-dimensional (4D) 1-form
and 2-form (non-)Abelian gauge theories which are, in general, considered on the six (4, 2)-
dimensional (6D) supermanifold [1–6]. The latter is parametrized by the superspace variables
ZM = (xµ, θ, θ̄ ) where the four even (bosonic) variables xµ(µ = 0, 1, 2, 3) correspond to
the 4D spacetime variables and two odd Grassmannian (θ2 = θ̄2 = 0, θ θ̄ + θ̄ θ = 0) variables
are the additional coordinates on the supermanifold. The nilpotent (anti-)BRST symmetries
for the 1-form 4D non-Abelian gauge fields and the corresponding (anti-)ghost fields emerge
from the horizontality condition [1–6] on the 6D supermanifold which enforces the equality
(F̃ (2) = F (2)) of the 2-form super curvature F̃ (2) = d̃Ã(1) + Ã(1) ∧ Ã(1) (constructed with the
help of the super exterior derivative d̃ and the 1-form super connection Ã(1)) to the ordinary
2-form curvature F (2) = dA(1) +A(1) ∧A(1) (constructed with the help of the ordinary exterior
derivative d and the 1-form connection A(1)). The above arguments (with the theoretical
arsenal of the horizontality condition) have also been applied to the case of 2-form Abelian
gauge theory in a straightforward manner (see, e.g., [6] for details).

For the discussion of any arbitrary four-dimensional p-form
[
A(p) = 1

p! (dxµ1 ∧dxµ2 · · ·∧
dxµp )Aµ1µ2···µp

]
Abelian gauge theory, within the framework of the usual superfield approach

to BRST symmetries, one constructs a (p + 1)-form super curvature F̃ (p+1) = d̃Ã(p) with
the help of a super exterior derivative d̃ and the super 6D p-form connection Ã(p) on the 6D
supermanifold. This is subsequently equated, due to the so-called horizontality condition
[1–6], to the ordinary four-dimensional (p + 1) form curvature F (p+1) = dA(p) constructed
with the help of the ordinary exterior derivative d = dxµ∂µ (with d2 = 0) and the ordinary 4D
p-form connection A(p). The covariant reduction of the 6D super curvature to the ordinary 4D
curvature, through the equality F̃ (p+1) = F (p+1) due to the horizontality condition, leads to
the derivation of the nilpotent (anti-)BRST symmetry transformations for the p-form Abelian
gauge field and the corresponding (anti)commuting (anti-)ghost fields of the given p-form 4D
Abelian gauge theory.

The horizontality condition of the above superfield approach has been christened
as the soul-flatness condition in [9] which amounts to setting equal to zero the
Grassmannian components of the (anti)symmetric super curvature tensor that constitutes
the super 2-form F̃ (2) (corresponding to a given 1-form gauge theory). The covariant
reduction of F̃ (2) (defined on the 6D supermanifold) to the ordinary 2-form curvature
F (2) (defined on the 4D ordinary spacetime manifold) leads to the geometrical origin and
interpretations for (i) the internal nilpotent (anti-)BRST symmetry transformations for the 4D
ordinary fields as the translations of the corresponding 6D superfields along the Grassmannian
directions of the 6D supermanifold, (ii) the nilpotent (anti-)BRST charges as the translation
generators along the θ and θ̄ directions of the 6D supermanifold, (iii) the nilpotency property
as a couple of successive translations along a particular Grassmannian direction of the
supermanifold, and (iv) the anticommutativity property of the (anti-)BRST symmetries (and

3 Such a class of 1-form gauge theories (that provide the theoretical basis for the three out of four fundamental
interactions of nature) is endowed with the first class constraints in the language of Dirac’s prescription for classification
scheme [7, 8]. These constraints generate the local gauge symmetries which dictate the interaction term in the theory.
In fact, the interaction term arises due to the coupling of the 1-form gauge fields with the conserved Noether currents
constructed by the matter (and other relevant) fields when one demands the local gauge invariance in the theory.
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their generators) as the anticommutativity encoded in the translational generators along the
θ and θ̄ directions of the supermanifold (cf (4.24)). These beautiful connections between
the geometrical objects on the 6D supermanifold and some key properties associated with
the internal nilpotent symmetry transformations of the BRST formalism in the ordinary 4D
spacetime are, however, confined only to the gauge fields and the (anti-)ghost fields of the
theory within the framework of the usual superfield approach to BRST formalism [1–6].

In a very recent set of papers [10–14], the usual superfield formalism has been generalized
to the augmented superfield formalism4 where additional restrictions on the 6D supermanifolds
have been invoked which have been found to be consistent with (and complementary to)
the horizontality condition. This augmented version of the superfield approach enables
one to derive the nilpotent (anti-)BRST symmetry transformations for all the fields of the
(non-)Abelian gauge theories [10–14] (as well as the reparametrization invariant
(supersymmetric) theories [11]) while keeping the geometrical interpretations of the
(anti-)BRST symmetries (and their generators) intact. These additional restrictions on the
6D supermanifold owe their origin to the equality of (i) the conserved and gauge invariant
matter currents [10] (and other conserved quantities [11]), and (ii) the gauge (i.e. BRST)
invariant quantities constructed with the help of the (super) covariant derivatives [12–14].
The former restrictions allow a logically consistent derivation of the (anti-)BRST symmetry
transformations for the matter fields whereas the latter lead to the derivations that are
mathematically unique. Both the above extensions have their own merits and advantages.

The purpose of the present paper is to derive the off-shell nilpotent and anticommuting
(anti-)BRST symmetry transformations for all the fields of the 4D QED (that includes Dirac
fields as matter fields) from a single gauge (i.e. BRST) invariant restriction on the 6D
supermanifold. We obtain all the nilpotent symmetry transformations that are derived by
exploiting (i) the horizontality condition, and (ii) one of its consistent generalizations [10],
separately. In fact, the consequences of both the above independent restrictions (i.e. (i) and (ii))
emerge very naturally from our present single restriction (cf (4.1)). Our present investigation is
essential primarily on four counts. First and foremost, the horizontality condition, as discussed
earlier, does not shed any light on the derivation of the nilpotent symmetry transformations
associated with the matter fields of a given interacting gauge theory whereas our present
single restriction on the 6D supermanifold does precisely that. Second, the single restriction
(cf (4.1)) imposed on the 6D supermanifold is a gauge (i.e. BRST) invariant condition that
is more physical than the horizontality condition which happens to be intrinsically a gauge
covariant restriction. Third, our present single restriction is a nice simplification of our
previous attempts [10–14] where two separate restrictions were imposed on the supermanifold
for the derivation of all the nilpotent transformations in the context of (non-)Abelian gauge
(and reparametrization invariant) theories. Finally, the horizontality condition and one of its
consistent extensions [10] are, in some sense, unified together in our present single restriction.
Thus, the imposition of our present single restriction (cf (4.1)) on the 6D supermanifold is
aesthetically and physically more appealing than the imposition of the horizontality condition
alone.

The contents of our present paper are organized as follows. In section 2, we set up the
notations and conventions by recapitulating the bare essentials of the (anti-)BRST symmetry
transformations in the framework of Lagrangian formulation for QED with Dirac fields.
Section 3 is devoted to the definition of suitable superfields and their expansions, in terms of
the basic and some secondary fields, along the Grassmannian directions of the supermanifold.
The central results of our investigation are contained in section 4 where we derive the nilpotent

4 Any mathematically consistent generalization of the usual superfield approach to BRST formalism.
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(anti-)BRST transformations for all the fields of the above QED from a single restriction (cf
(4.1)) on the supermanifold. Finally, we make some concluding remarks and point out a few
future directions for further investigations in section 5.

2. (Anti-)BRST symmetries in Lagrangian formulation: a brief sketch

Let us begin with the (anti-)BRST invariant Lagrangian density LB for the interacting four
(3 + 1)-dimensional (4D) U(1) gauge theory (QED) in the Feynman gauge5 [9, 15, 16]

LB = − 1
4FµνFµν + ψ̄(iγ µDµ − m)ψ + B(∂ · A) + 1

2B2 − i∂µC̄∂µC, (2.1)

where Dµψ = ∂µψ + ieAµψ is the covariant derivative on the Dirac field ψ(x) with charge
e and mass m. The U(1) gauge field Aµ couples to the matter conserved current Jµ = ψ̄γµψ

(constructed by the Dirac fields (ψ, ψ̄)) with the coupling strength e. This coupling generates
an interaction term −eψ̄γ µAµψ in the theory which exists basically due to the requirement
of the local U(1) gauge invariance. The γ ’s in (2.1) are the usual Dirac 4 × 4 matrices. The
2-form F (2) = dA(1) = 1

2 (dxµ ∧ dxν)Fµν , constructed with the help of the exterior derivative
d = dxµ∂µ (with d2 = 0) and 1-form A(1) = dxµAµ, defines the field strength tensor
Fµν = ∂µAν − ∂νAµ for the U(1) gauge field Aµ. The Nakanishi–Lautrup auxiliary field B
linearizes the gauge-fixing term − 1

2 (∂ · A)2 of the Lagrangian density (2.1) and the fermionic
(i.e. C2 = C̄2 = 0, CC̄ + C̄C = 0) (anti-)ghost fields (C̄)C are required to maintain the
unitarity and ‘quantum’ gauge (i.e. BRST) invariance together, for a given physical process,
at any arbitrary order of perturbative computation6.

The above Lagrangian density (2.1) for QED with Dirac fields, respects the following
infinitesimal, off-shell nilpotent

(
s2
(a)b = 0

)
, anticommuting (sbsab + sabsb = 0), local,

continuous and covariant (anti-)BRST (s(a)b) symmetry transformations7 [9, 15, 16]

sbAµ = ∂µC sbC = 0 sbC̄ = iB sbψ = −ieCψ

sbψ̄ = −ieψ̄C sbB = 0 sbFµν = 0 sb(∂ · A) = �C

sabAµ = ∂µC̄ sabC̄ = 0 sabC = −iB sabψ = −ieC̄ψ

sabψ̄ = −ieψ̄C̄ sabB = 0 sabFµν = 0 sab(∂ · A) = � C̄

(2.2)

because it transforms to a total derivative. Some noteworthy points, at this juncture, are in order
now. First, under the nilpotent (anti-)BRST transformations, the kinetic energy term of the
(non-)Abelian gauge fields remains invariant. More precisely, for the Abelian gauge theory, it
is the field strength tensor Fµν itself that remains unchanged. Second, the gauge-fixing term
(∂ · A), on the other hand, transforms under the (anti-)BRST transformations. Finally, the
cohomological operator d = dxµ∂µ (with d2 = 0) and the nilpotent

(
s2
(a)b = 0

)
(anti-)BRST

5 We adopt here the notations and conventions such that the flat Monkowskian metric ηµν = diag (+1, −1,−1,−1)

for the 4D spacetime manifold and F0i = ∂0Ai − ∂iA0 = Ei, Fij = εijkBk, Bi = 1
2 εijkFjk are the electric (Ei)

and magnetic (Bi) components of the field strength tensor Fµν . Here εijk is the totally antisymmetric Levi-Civita
tensor (with ε123 = +1) on the 3D subspace of the 4D Minkowskian space. Furthermore, the Greek indices
µ, ν, . . . = 0, 1, 2, 3, present in (2.1), stand for the spacetime directions and Latin indices i, j, k, . . . = 1, 2, 3
correspond only to the space directions on the 4D spacetime manifold.
6 The importance of the (anti-)ghost fields emerges in its full blaze of glory in the context of perturbative computations,
connected with a given physical process, that is allowed by the interacting non-Abelian gauge theory. In fact, for the
proof of unitarity of such kind of physical process, one requires a Feynman loop diagram constructed by purely the
fermionic (anti-)ghost fields corresponding to each such loop diagram existing in the theory due to a purely bosonic
non-Abelian gauge (gluon) field (see, e.g., [17] for details).
7 We follow here the notations adopted in [15, 16]. In fact, the BRST prescription is to replace the local gauge
parameter of the original gauge theory by an anticommuting (ηC +Cη = 0, ηψ +ψη = 0, etc) spacetime independent
parameter η and the (anti-)ghost fields. Thus, in its totality, the (anti-)BRST transformations δ(A)B are a product
(δ(A)B = ηs(a)b) of η and the nilpotent s2

(a)b = 0 transformations s(a)b .
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transformations s(a)b are inter-connected. This is due to the fact that the electric Ei and
magnetic Bi fields (which are components of Fµν) remain invariant under the transformations
s(a)b and they owe their origin, primarily, to the nilpotent (d2 = 0) cohomological operator d
because F (2) = dA(1) = 1

2 (dxµ ∧ dxν)Fµν .
According to the Noether’s theorem, the above continuous symmetry transformations

lead to the derivation of the conserved (anti-)BRST charges Q(a)b which are found to be
nilpotent (Q2

(a)b = 0) of order two. These charges generate the above continuous nilpotent
transformations. For a generic local field 	 = Aµ,C, C̄, ψ, ψ̄, B of the Lagrangian density
(2.1), the infinitesimal transformations (2.2) can be expressed in terms of Q(a)b, as

sr	(x) = −i[	(x),Qr ]±, r = b, ab (2.3)

where the subscripts (±), on the square bracket, stand for this bracket to correspond to
an (anti)commutator for the generic local field 	(x) of the Lagrangian density (2.1) being
(fermionic)bosonic in nature. For our present discussions, the exact expressions for the
conserved, nilpotent and anticommuting (QbQab + QabQb = 0) (anti-)BRST charges Q(a)b

are not important but their explicit forms can be found in [9, 15, 16].

3. From ordinary basic fields to superfields: super expansion

To derive the above local, continuous, covariant, nilpotent and anticommuting (anti-)BRST
infinitesimal transformations (2.2) within the framework of superfield formalism, first of all,
we generalize the basic local fields Aµ,C, C̄, ψ, ψ̄ of the Lagrangian density (2.1), defined on
the 4D spacetime manifold, to the corresponding superfields Bµ,F, F̄, 
, ψ̄ defined on the
six-dimensional supermanifold parametrized by the superspace variables ZM = (xµ, θ, θ̄ ).
These superfields can be expanded in terms of the basic fields (Aµ,C, C̄, ψ, ψ̄) and extra
secondary fields, along the Grassmannian directions, as follows [4, 3, 10]

Bµ(x, θ, θ̄ ) = Aµ(x) + θR̄µ(x) + θ̄Rµ(x) + iθ θ̄Sµ(x)

F(x, θ, θ̄ ) = C(x) + iθB̄1(x) + iθ̄B2(x) + iθ θ̄s(x)

F̄(x, θ, θ̄ ) = C̄(x) + iθB̄2(x) + iθ̄B1(x) + iθ θ̄ s̄(x)


(x, θ, θ̄ ) = ψ(x) + iθb̄1(x) + iθ̄b2(x) + iθ θ̄f (x)


̄(x, θ, θ̄ ) = ψ̄(x) + iθb̄2(x) + iθ̄b1(x) + iθ θ̄ f̄ (x).

(3.1)

It is obvious that the superfield Bµ(x, θ, θ̄ ) is bosonic and the rest of the above superfields are
fermionic (i.e. F2 = F̄2 = 
2 = 
̄2 = 0) in nature.

A few salient features of the above expansions are as follows:

(i) In the limit (θ, θ̄ ) → 0, we do retrieve the basic fields of the Lagrangian density (2.1)
that are defined on the 4D ordinary Minkowskian spacetime manifold.

(ii) In the above expansion, the total number of fermionic fields (ψ, ψ̄, f, f̄ , C, C̄, s,

s̄, Rµ, R̄µ) do match with the bosonic fields (b1, b̄1, b2, b̄2, B1, B̄1, B2, B̄2, Aµ, Sµ).

(iii) The above straightforward observation in (ii) is an essential requirement for any arbitrary
superfield theory to be discussed in the framework of supersymmetry.

It is important to generalize the exterior derivative d = dxµ∂µ and the 1-form connection
A(1) = dxµAµ, defined on the ordinary 4D Minkowskian flat manifold, to the six (4, 2)-
dimensional supermanifold. This is required because, as discussed and emphasized earlier



10580 R P Malik

after (2.2), the above geometrical quantities have relevance with the (anti-)BRST symmetry
transformations. Thus, these quantities on the above supermanifold, are

d̃ = dZM∂M = dxµ∂µ + dθ∂θ + dθ̄∂θ̄

Ã(1) = dZMÃM = dxµBµ(x, θ, θ̄ ) + dθF̄(x, θ, θ̄ ) + dθ̄F(x, θ, θ̄ ),
(3.2)

which reduce to d = dxµ∂µ and A(1) = dxµAµ in the limit (θ, θ̄ ) → 0. It is clear, therefore,
that (i) d̃ and Ã(1) are a set of consistent 6D superspace generalization of the 4D quantities d
and A(1) defined on the ordinary space, and (ii) the superspace derivative ∂M and supervector
superfield ÃM have the component multiplets (∂µ, ∂θ , ∂θ̄ ) and (Bµ,F, F̄), respectively. Both
the quantities, defined in (3.2), would be useful in the next section.

4. Gauge invariant restriction on supermanifold: nilpotent symmetries

To provide the geometrical interpretation for the nilpotent symmetry transformations (2.2)
within the framework of the superfield approach to BRST formalism, we have to exploit a
certain specific restriction on the supermanifold. To this end in mind, we begin with the
following gauge invariant restriction on the six (4, 2)-dimensional supermanifold:


̄(x, θ, θ̄ )D̃D̃
(x, θ, θ̄ ) = ψ̄(x)DDψ(x), (4.1)

where the (super) covariant derivatives on the six-dimensional supermanifold (i.e. D̃) and
ordinary 4D Minkowskian spacetime manifold (i.e. D) are

D̃ = d̃ + ieÃ(1)(x, θ, θ̄ ), D = d + ieA(1)(x). (4.2)

In the above, the symbols d̃ and Ã(1) are defined in (3.2) on the (4, 2)-dimensional
supermanifold and corresponding 4D quantities are d = dxµ∂µ,A(1) = dxµAµ .

It is obvious that the rhs of (4.1) is a U(1) gauge invariant quantity which can be explicitly
expressed, in terms of the 2-form curvature F (2) = dA(1), as

ψ̄(x)DDψ(x) = 1
2 ie(dxµ ∧ dxν)ψ̄(x)Fµν(x)ψ(x) ≡ ieψ̄F (2)ψ. (4.3)

It will be noted that (i) the rhs of (4.3) possesses only the 2-form differentials 1
2 (dxµ ∧ dxν)

in terms of spacetime variables, and (ii) the well-known relation DDψ = ieF (2)ψ has
been used in the above derivation. In contrast, the lhs will lead to the 2-form differentials
1
2 (dZM ∧ dZN) which will contain all the possible combinations of 2-forms, constructed by
superspace differentials (i.e. dxµ ∧ dxν, dxµ ∧ dθ, dxµ ∧ dθ̄ , dθ̄ ∧ dθ̄ , dθ ∧ dθ̄ , dθ ∧ dθ ).

The explicit form of the lhs, in terms of the component multiplet superfields Bµ,F, F̄ ,
the superspace differentials and the partial derivatives ∂µ, ∂θ , ∂θ̄ , can be written as


̄(dxµ)(∂µ + ieBµ) ∧ [dxν(∂ν + ieBν)
 + dθ(∂θ + ieF̄)
 + dθ̄ (∂θ̄ + ieF)
]

+ 
̄(dθ)(∂θ + ieF̄) ∧ [dxµ(∂µ + ieBµ)
 + dθ(∂θ + ieF̄)
 + dθ̄ (∂θ̄ + ieF)
]

+ 
̄(dθ̄ )(∂θ̄ + ieF) ∧ [dxµ(∂µ + ieBµ)
 + dθ(∂θ + ieF̄)
 + dθ̄ (∂θ̄ + ieF)
].

(4.4)

The expansion of the above equation would lead to the coefficients of (dZM ∧dZN) where the
superspace variable ZM = (xµ, θ, θ̄ ). It is straightforward to note that the 2-form, constructed
only with the spacetime differentials (dxµ ∧dxν), would match with the similar kind of 2-form
emerging from the rhs (cf (4.3)). The rest of the components of the super 2-form (with the
Grassmannian differentials) will be set equal to zero due to (4.1).

For algebraic convenience, it is useful to first collect the coefficients of (dθ ∧ dθ) which
can be succinctly expressed as follows:

−ie(dθ ∧ dθ)[iψ̄B̄2ψ + θ(L1) + θ̄ (M1) − θ θ̄(N1)], (4.5)
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where the explicit expressions for L1,M1 and N1 are

L1 = ψ̄B̄2b̄1 − b̄2B̄2ψ, M1 = ψ̄B̄2b2 − b1B̄2ψ − iψ̄ s̄ψ,

N1 = ψ̄B̄2f + ψ̄ s̄b̄1 + f̄ B̄2ψ + b̄2s̄ψ + ib̄2B̄2b2 − ib1B̄2b̄1.
(4.6)

In the above computation, we have exploited the following inputs:

∂θ∂θ̄
 = −if, ∂θ
 = ib̄1 + iθ̄f, ∂θ̄
 = ib2 − iθf, ∂θF = iB̄1 + iθ̄ s.

(4.7)

Ultimately, we have to set equal to zero, separately and independently, the coefficients of
(dθ ∧ dθ), [(dθ ∧ dθ)(θ)], [(dθ ∧ dθ)(θ̄)] and [(dθ ∧ dθ)(θ θ̄)]. Restrictions emerging from
these conditions, for e �= 0, ψ �= 0, ψ̄ �= 0, are

B̄2 = 0, s̄ = 0. (4.8)

The above values, substituted in (3.1), imply that the fermionic superfield F̄(x, θ, θ̄ ) becomes
an anti-chiral superfield because it is constrained to be independent of θ .

In an exactly similar fashion, we can compute the coefficients of (dθ̄ ∧ dθ̄ ). These are
concisely expressed by the following equation,

+ie(dθ̄ ∧ dθ̄ )[−iψ̄B2ψ + θ(L2) + θ̄ (M2) + θ θ̄(N2)], (4.9)

where the detailed expressions for L2,M2, N2, are

L2 = −ψ̄B2b̄1 + b̄2B2ψ, M2 = −ψ̄B2b2 + b1B2ψ + iψ̄sψ,

N2 = ψ̄B2f + ψ̄sb̄1 + f̄ B2ψ + b̄2sψ + ib̄2B2b2 + ib1B2b̄1.
(4.10)

To retain the restriction imposed on supermanifold in (4.1), it is straightforward to note that
the coefficients of (dθ̄ ∧dθ̄ ), [(dθ̄ ∧dθ̄ )(θ)], [(dθ̄ ∧dθ̄ )(θ̄ )] and [(dθ̄ ∧dθ̄ )(θ θ̄)] in (4.9) would
be equal to zero separately and independently. These finally imply (for e �= 0, ψ �= 0, ψ̄ �= 0)

B2 = 0, s = 0. (4.11)

This entails upon the fermionic superfield F(x, θ, θ̄ ) to become chiral in nature. Results of
(4.8) and (4.11) lead to the following expansions for the fermionic superfields in (3.1):

F (c)(x, θ) = C(x) + iθB̄1(x), F̄ (ac)(x, θ̄ ) = C̄(x) + iθ̄B1(x). (4.12)

The above expansions will be used in our further computations.
Now we focus on the computations of the coefficients of (dθ ∧ dθ̄ ). These are expressed

in terms of the fermionic superfield expansion of (4.12), as

−(dθ ∧ dθ̄ )[
̄{(∂θ + ieF̄ (ac))(∂θ̄ + ieF (c)) + (∂θ̄ + ieF (c))(∂θ + ieF̄ (ac))}
]. (4.13)

The above equation can be simplified to finally yield

−ie(dθ ∧ dθ̄ )[
̄(∂θF (c) + ∂θ̄ F̄ (ac))
] = 0, (4.14)

where we have used ∂θ∂θ̄ + ∂θ̄ ∂θ = 0, CC̄ = −C̄C,F (c)F̄ (ac) = −F̄ (ac)F (c). This condition
can be satisfied if and only if B1(x) + B̄1(x) = 0. We are free to choose B1(x) = −B̄1(x) =
B(x) of the Lagrangian density (2.1). Thus, we have (for 
 �= 0, 
̄ �= 0, e �= 0)

F (c) = C(x) − iθB(x) ≡ C(x) + θ(sabC(x)),

F̄ (ac) = C̄(x) + iθ̄B(x) ≡ C̄(x) + θ̄ (sbC̄(x)),
(4.15)

which lead to the derivation of the (anti-)BRST transformations (2.2) for the (anti-)ghost fields
(C̄)C in the framework of the superfield formalism with restriction (4.1).
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We collect the coefficients of (dxµ ∧ dθ) and (dxµ ∧ dθ̄ ) from (4.4) and set them equal
to zero to maintain the consistency with the restriction (4.1). These imply

ie(dxµ ∧ dθ)[
̄(∂θBµ − ∂µF̄ (ac))
] = 0, ie(dxµ ∧ dθ̄)[
̄(∂θ̄Bµ − ∂µF (c))
] = 0.

(4.16)

The above requirements, using expansions (3.1) and (4.15), lead to

Rµ(x) = ∂µC(x), R̄µ(x) = ∂µC̄(x), Sµ(x) = ∂µB(x). (4.17)

Substitution of these values in (3.1) leads to the derivation of (anti-)BRST symmetry
transformations (2.2) for the U(1) gauge field Aµ, as the superfield Bµ → B(g)

µ . That
is

B(g)
µ (x, θ, θ̄ ) = Aµ(x) + θ(sabAµ(x)) + θ̄ (sbAµ(x)) + θ θ̄(sbsabAµ(x)). (4.18)

It is worthwhile to emphasize that (i) unlike the fermionic superfields (F̄,F) which reduce
to (anti-)chiral superfields after the application of the restriction (4.1), the bosonic superfield
Bµ retains its general form (i.e. Bµ → B(g)

µ ) even after application of (4.1), and (ii) the
expansions in (4.15) and (4.18) have been obtained in earlier works [4, 3, 10] by exploiting
the horizontality condition8 on the six (4, 2)-dimensional supermanifold.

Finally, let us compute the coefficients of the 2-form differentials (dxµ∧dxν), constructed
by the spacetime variables. The equality that emerges from the lhs and rhs is

1
2 ie(dxµ ∧ dxν)
̄

(
∂µB

(g)
ν − ∂νB

(g)
µ

)

 = 1

2 ie(dxµ ∧ dxν)ψ̄(∂µAν − ∂νAµ)ψ. (4.19)

It is straightforward to check, with the help of Rµ = ∂µC, R̄µ = ∂µC̄, Sµ = ∂µB, that
∂µB

(g)
ν − ∂νB

(g)
µ = ∂µAν − ∂νAµ. Thus, the restriction, that emerges from (4.19), is9


̄(x, θ, θ̄ )
(x, θ, θ̄ ) = ψ̄(x)ψ(x) ⇒ iθ(L3) + iθ̄ (M3) + iθ θ̄(N3) = 0, (4.20)

where the explicit forms of L3,M3 and N3 are

L3 = b̄2ψ − ψ̄b̄1, M3 = b1ψ − ψ̄b2, N3 = f̄ ψ + ψ̄f + ib̄2b2 − ib1b̄1. (4.21)

In the above, the expansions for the fermionic superfields (ψ̄,
), listed in (3.1), have been
taken into account for computation of the lhs ψ̄(x, θ, θ̄ )
(x, θ, θ̄ ).

At this juncture, it is worthwhile to mention that the simple relationship quoted in
(4.20) does not emerge when one attempts to derive the nilpotent (anti-)BRST symmetry
transformations for all the fields of a given 1-form 4D non-Abelian gauge theory where there
is an interaction between the 1-form non-Abelian gauge field and the Dirac fields. In fact, the
non-Abelian nature of the theory leads to a whole range of interesting complications when
one exploits restriction (4.1) on the 6D supermanifold. However, the accurate computation,
ultimately, leads to the derivation of the exact values for the b1, b̄1, b2, b̄2, f and f̄ present in
the expansions of the superfields 
(x, θ, θ̄ ) and 
̄(x, θ, θ̄ ) (cf (3.1)) for the non-Abelian gauge
theory [18]. This, in turn, leads to the expansions for the fermionic superfields 
(x, θ, θ̄ )

and 
̄(x, θ, θ̄ ) in terms of the nilpotent (anti-)BRST symmetry transformations for the Dirac

8 In the horizontality condition F̃ (2) = F (2), the super 2-form curvature (i.e. F̃ (2) = d̃Ã(1) = 1
2 (dZM ∧ dZN)F̃MN )

and the ordinary 2-form curvature (i.e. F (2) = dA(1) = 1
2 (dxµ ∧ dxν)Fµν ), are equated on the supermanifold where

d̃ and Ã(1) are defined in (3.2). This restriction implies Rµ = ∂µC, R̄µ = ∂µC̄, s = s̄ = 0, Sµ = ∂µB, B1 + B̄1 =
0, B2 = B̄2 = 0 in (3.1). Thus, these values entail upon expansions (3.1) to reduce to (4.15) and (4.18). It is obvious
that the horizontality condition leads to the derivation of the nilpotent (anti-)BRST transformations s(a)b only for the
gauge and (anti-)ghost fields of the theory.
9 It is worth emphasizing that relation (4.20) cannot emerge from the gauge covariant version (i.e. D̃D̃
(x, θ, θ̄) =
DDψ(x)) of the gauge invariant restriction (4.1) on the 6D supermanifold.
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fields of the interacting 1-form non-Abelian gauge theory [18]. Thus, the gauge (i.e. BRST)
invariant restriction (4.1) generates the nilpotent (anti-)BRST transformations for all the fields
of the interacting Abelian as well as non-Abelian gauge theories where there is an explicit
coupling between the matter fields and gauge fields.

It is clear that L3,M3 and N3 of (4.21) should be separately and independently set equal
to zero to maintain the sanctity of equation (4.1) on the 6D supermanifold. One of the possible
solutions to the conditions: L3 = 0,M3 = 0 and N3 = 0, is [10]

b1 = −eψ̄C, b2 = −eCψ, b̄1 = −eC̄ψ, b̄2 = −eψ̄C̄,

f = −ie[B + eC̄C]ψ, f̄ = +ieψ̄[B + eCC̄].
(4.22)

The solutions, listed in (4.22), form a set of consistent solutions and, these values, in some
sense, are very logical10. To elaborate on the above solutions to be a logical one, let us first
focus on L3 = 0 which implies b̄2ψ = ψ̄b̄1. A smart and judicious guess will be to choose the
bosonic components b̄2 and b̄1 (of the expansion in (3.1)) to be proportional to the fermionic
fields ψ̄ and ψ , respectively. The latter fields can be made to be bosonic in nature only by
bringing in the fermionic (C2 = C̄2 = 0) (anti-)ghost fields (C̄)C of the theory. There is
no other possible choice because the other fermionic fields (ψ2 = 0, ψ̄2 = 0) of the theory
cannot do the job. In an exactly similar fashion, all the other choices in (4.22) have been made
with an appropriate factors of the constants i and e thrown in.

It is worthwhile to lay stress, at this stage, that in our earlier works [10, 11] on the
consistent extension of the usual superfield approach to BRST formalism (endowed with
the horizontality condition alone [1–6]), we exploited an additional new restriction on the
6D supermanifold by requiring the super matter current J̃ µ = ψ̄(x, θ, θ̄ )γµ
(x, θ, θ̄ ) to be
equal to the U(1) gauge invariant and conserved matter current Jµ = ψ̄(x)γµψ(x). This
led exactly to the same kind of conditions on the component fields of the expansion of 


and ψ̄ , as captured in L3 = M3 = N3 = 0. This happened because of the fact that both
the quantities, ψ̄γµψ and ψ̄ψ , are U(1) gauge (and, therefore, BRST) invariant quantities.
The most interesting feature of our present investigation is the crucial fact that the condition
ψ̄(x, θ, θ̄ )
(x, θ, θ̄ ) = ψ̄(x)ψ(x) comes out automatically from the single restriction (4.1)
on the 6D supermanifold which furnishes the results of the horizontality condition, too. We
would like to lay emphasis on the fact that the condition ψ̄(x, θ, θ̄ )
(x, θ, θ̄ ) = ψ̄(x)ψ(x) is
superior to the condition ψ̄(x, θ, θ̄ )γµ
(x, θ, θ̄ ) = ψ̄(x)γµψ(x) because the former condition
is without the Dirac gamma-matrices whereas the latter condition is endowed with it. The
reason behind the superiority of the former over the latter is the fact that, so far, we have not
been able to provide a nontrivial six-dimensional representation of the Dirac gamma-matrices
that are present on the lhs of the latter restriction. It is obvious that the lhs (of the latter
restriction) is defined on the 6D supermanifold.

The insertions of the values of the secondary fields in terms of the basic fields of the
Lagrangian density (2.1), into the super expansion (3.1), finally, lead to the following expansion
of the superfields in terms of the nilpotent (s2

(a)b = 0) and anticommuting (sbsab + sabsb = 0)

(anti-)BRST transformations s(a)b of (2.2):

B(g)
µ (x, θ, θ̄ ) = Aµ(x) + θ(sabAµ(x)) + θ̄ (sbAµ(x)) + θ θ̄(sbsabAµ(x))

F (c)(x, θ, θ̄ ) = C(x) + θ(sabC(x)) + θ̄ (sbC(x)) + θ θ̄(sbsabC(x))

10 To be precise, the solutions in (4.22) are not the unique set of solutions. This is due to the fact that the signs and
appropriate factors of i and e are not determined mathematically in a unique fashion. To obtain the unique set of
solutions, the gauge invariant constraint on the six-dimensional supermanifold is 
̄(x, θ, θ̄)(d̃ + ieÃ(1)

(h))
(x, θ, θ̄) =
ψ̄(x)(d + ieA(1))ψ(x) where Ã

(1)
(h) = dxµB(g)

µ + dθF̄ (ac) + dθ̄F (c). This restriction on 6D supermanifold has been
exploited in our recent work (see, e.g., [12, 13] for details).
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F̄ (ac)(x, θ, θ̄ ) = C̄(x) + θ(sabC̄(x)) + θ̄ (sbC̄(x)) + θ θ̄(sbsabC̄(x))


(g)(x, θ, θ̄ ) = ψ(x) + θ(sabψ(x)) + θ̄ (sbψ(x)) + θ θ̄(sbsabψ(x))


̄(g)(x, θ, θ̄ ) = ψ̄(x) + θ(sabψ̄(x)) + θ̄ (sbψ̄(x)) + θ θ̄(sbsabψ̄(x)).

(4.23)

The above expressions provide the geometrical interpretations for (i) the transformations s(a)b

(and corresponding generators Q(a)b) as the translational generators along the Grassmannian
directions of the 6D supermanifold, (ii) the nilpotency of s(a)b and Q(a)b as a couple of
successive translations along the θ and θ̄ directions of 6D supermanifold, and (iii) the
anticommutativity properties of s(a)b and Q(a)b as encoded in the similar type of relations
between translational generators along the θ and θ̄ directions.

All the above key properties associated with the (anti-)BRST transformations for all the
basic fields of QED (with Dirac fields) are encapsulated in the following:

sb ⇔ Qb ⇔ Limθ→0
∂

∂θ̄
, sab ⇔ Qab ⇔ Limθ̄→0

∂

∂θ
,

s2
(a)b = 0 ⇔ Q2

(a)b = 0 ⇔
(

∂

∂θ

)2

= 0

(
∂

∂θ̄

)2

= 0,

sbsab + sabsb = 0 ⇔ QbQab + QabQb = 0 ⇔ ∂

∂θ̄

∂

∂θ
+

∂

∂θ

∂

∂θ̄
= 0.

(4.24)

Thus, all the salient mathematical features of the BRST symmetries (as well as their generators)
have been expressed in terms of the geometrical objects on the 6D supermanifold. Furthermore,
the derivations of all the nilpotent (anti-)BRST symmetry transformations for QED (with
Dirac fields) have been obtained together within the framework of the augmented superfield
formalism in one stroke (cf (4.1)) and their geometrical origin and interpretations have been
provided.

5. Conclusions

One of the central results of our present investigation is the derivation of the nilpotent and
anticommuting (sbsab + sabsb = 0) (anti-)BRST symmetry transformations s(a)b for the matter
(Dirac) fields, the U(1) gauge field and the (anti-)ghost fields together from a single restriction
(cf (4.1)) imposed on the six (4, 2)-dimensional supermanifold (where all the superfields of
the theory are defined). This is a completely new result because, in our earlier works [10–14],
the above nilpotent symmetry transformations have been derived in two steps by exploiting
(i) the horizontality condition, and (ii) its consistent extensions [10–14], on the 6D
supermanifold. It will be noted, however, that there is an interplay between the above two
restrictions and they are not completely separate and independent. Thus, for a given U(1)

Abelian interacting 4D gauge theory, our present investigation provides a simpler derivation of
the nilpotent (anti-)BRST transformations for all the fields of the theory within the framework
of the superfield approach to BRST formalism.

The new restriction (4.1) on the 6D supermanifold is a gauge invariant restriction which
leads to the derivation of the nilpotent (anti-)BRST symmetry transformations for all the fields
(including the matter fields) of QED. Its gauge covariant version on the 6D supermanifold
does not lead to the derivation of nilpotent (anti-)BRST symmetry transformations for the
matter (Dirac) fields. It will be noted that the horizontality condition, on the other hand, is
basically a gauge covariant restriction on the 6D supermanifold. In fact, the covariant version
of (4.1) leads to the derivation of the exact nilpotent (anti-)BRST symmetry transformations
for the gauge and (anti-)ghost fields only which are also the main results of the restriction
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due to the horizontality condition on the 6D supermanifold. Thus, the covariant version of
the restriction (4.1) is equivalent, in some sense, to the restriction due to the horizontality
condition. It is worth emphasizing that the horizontality condition F̃ (2) = F (2) reduces to
the gauge invariant restriction on the 6D supermanifold only for the interacting U(1) gauge
theory (i.e. QED). This observation is, however, not true for the general case of the interacting
1-form non-Abelian gauge theories.

The importance of the gauge (i.e. BRST) invariant restriction in (4.1) comes out in
its full blaze of glory in the context of superfield approach to BRST symmetries for the
1-form interacting non-Abelian 4D gauge theory where there is a coupling between the 1-form
non-Abelian gauge field and the Dirac fields [18]. In fact, it has been shown in this very
recent work [18] that the off-shell nilpotent symmetries for all the fields (of the (anti-)BRST
invariant Lagrangian density of a given 4D 1-form interacting non-Abelian gauge theory) can
be precisely computed due to the gauge invariant restriction (4.1) on the 6D supermanifold. In
our present endeavour, there is a great deal of simplification in the derivation of the nilpotent
symmetries for all the fields of the given 4D 1-form interacting U(1) gauge theory (i.e. QED).
This happens because of its Abelian nature. The situation is completely different in the case
of the superfield approach to the derivation of the nilpotent symmetry transformations for
the 1-form interacting 4D non-Abelian theory where the non-Abelian nature of the theory
generates interesting complications (see, e.g., [18]).

The horizontality condition of the usual superfield approach to BRST formalism has to
be generalized so that one could obtain all the nilpotent symmetry transformations for all the
fields of a given 4D p-form (non-)Abelian interacting gauge theory. This is due to the fact that
the results, derived from the application of the horizontality condition on the 6D supermanifold
alone, are partial in the sense that one obtains only the nilpotent symmetry transformations
for the p-form gauge fields and the corresponding (anti)commuting (anti-)ghost fields of the
theory. The matter fields of the interacting p-form gauge theories remain untouched within the
framework of the usual superfield formalism (with the theoretical arsenal of the horizontality
condition alone). Thus, our present attempt is a step forward in the direction of the consistent
and precise generalization of the horizontality condition where (i) the nilpotent symmetry
transformations for all the fields (including the matter fields) of an interacting gauge theory
are obtained, and (ii) the geometrical interpretations for all the properties associated with
the BRST symmetries (and their generators) remain exactly the same as in the case of the
application of the horizontality condition alone.

As a side remark, it is worthwhile to mention that the present off-shell nilpotent(
s2
(a)b = 0

)
(anti-)BRST symmetry transformations s(a)b for the interacting 1-form Abelian

U(1) gauge theory is derived for the specific choice of the gauge-fixing term (i.e. − 1
2 (∂ ·A)2 ≡

B(∂ · A) + 1
2B2) in the Feynman gauge. In this gauge, the ghost fields decouple from the

rest of the physical fields of the theory so that any arbitrary state in the quantum Hilbert
space is a direct product of the physical state and the ghost states. The subsidiary condition
Qb|phys〉 = 0, with the conserved and nilpotent BRST charge Qb on the physical state
(first proposed by Curci and Ferrari [19, 20]), plays a pivotal role in the proof of unitarity
of the S-matrix of the theory by exploiting the so-called ‘quartet mechanism’ (see, e.g.,
[21] for details). In general, for the non-Abelian gauge theory, the gauge-fixing term
can include the ghost fields and, as a consequence, there would be an explicit coupling
between the non-Abelian gauge fields and the (anti-)ghost fields. In this specific case, for
the massless as well as massive gauge fields, a thorough discussion, devoted to the proof
of unitarity of the S-matrix, has been carried out in [20, 22, 23]. However, for our present
simple case of 1-form Abelian gauge theory in the Feynman gauge, the physicality criteria
(Qb|phys〉 = 0), the nilpotency property

(
Q2

b = 0
)

and the conservation of the BRST charge
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(Q̇b = 0), are good enough to shed some useful light on the unitarity of the theory (see,
e.g., [21]).

It is interesting to check the validity the idea put forward in our present investigation,
in different contexts (for totally different kinds of interacting systems). This will enable
us to put our prescription on firmer footings as the gauge invariant restriction in (4.1) is a
general restriction (valid for the (non-)Abelian gauge theories). In the superfield approach
to BRST formalism, this prescription might be tested for the cases of (i) the complex
scalar fields in interaction with the U(1) gauge field, (ii) the gravitational theories which
are very similar, in some sense, to the non-Abelian gauge theories (see, e.g., [16] for
details on analogy), and (iii) the 2-form (non-)Abelian gauge fields and their interactions.
Furthermore, it will be a challenging endeavour to obtain the results of the horizontality
condition and its generalization [12, 13] (that lead to mathematically unique derivations of
the nilpotent symmetry transformations for the matter fields) from a single restriction on the
6D supermanifold. The above-pointed issues are some of the promising problems that are
presently under investigation and our results will be reported elsewhere [24].
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